

40 YEARS of collaboration, innovation and education.

A new application for electron beam: Calibration of radiation survey meters

Braking rays of an electron beam allows the calibration of radiation survey meters through large ranges of energy and dose rate without radioactive source.

Calibration of radiation survey meters Context

Periodic calibration control consists in measuring the characteristic quantities of an instrument, provided by its **calibration certificate**.

For instruments without permanent control system, the frequency of the periodic calibration control is triennial in France by decree of 21 May 2010.

Periodic calibration control is currently made using a **radioactive source** while we present here an innovative method that use **braking rays** provided by an **electron beam**.

VANCOUVER

BC. CANADA

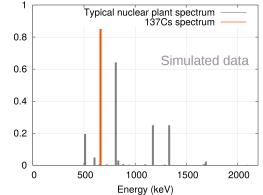
Calibration of radiation survey meters Context

Calibration source

⇒ ¹³⁷Cs standard

Advantages:

- · proven method,
- standard method (ISO-4037),


Disadvantages:

- · risk of accidental exposure,
- low productivity,
- narrow energy range.

VANCOUVER

BC. CANADA

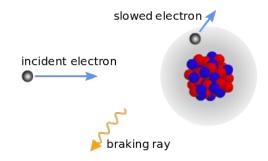
Calibration of radiation survey meters Method

IMRP2016

Goal:

propose a calibration method to calibrate radiation-meters through large ranges of energy and dose-rate.

Objective:


avoid radioactive sources with activities larger than their exemption threshold.

Intended way:

use the bremsstrahlung of electrons accelerated to a few MeV as a calibration source.

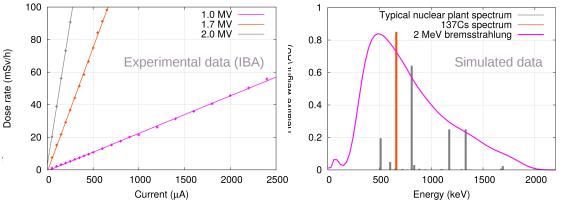
Bremsstrahlung:

due to interaction of charged particles in an electric or magnetic field (can be of nuclear type), electron's loose of energy \Rightarrow production of X or y rays.

VANCOUVER

Calibration of radiation survey meters

IMRP2016


Method

Calibration source

⇒ Bremsstrahlung

Advantages:

- · representative energy spectrum
- · dose-rate ∝ beam intensity,
- no radioactive source,
- higher productivity.

Challenges:

- stability/reproducibility of the source,
- · large dose-rate range (0.1 μ Sv/h 100 Sv/h),
- · homogeneity of the irradiation field,
- · automation of the method.

VANCOUVER

BC. CANADA

Calibration of radiation survey meters Method

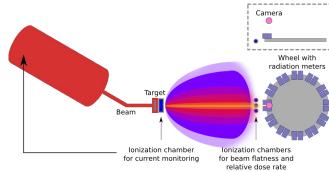
Calibration of the source:

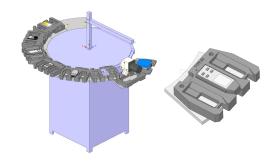
- · absolute measurement of Kerma in air,
- traceability to a primary source (national standard),
- processed by CEA/LNHB¹.

Transfer ionisation chambers to:

- · control homogeneity of the field,
- measure dose-rate to be compared to the measurement of radiation-survey meters.

At the carousel:


camera to read the measurement of radiation-survey meters.


IMRP2016

¹ national metrology laboratory in the field of ionizing radiation.

VANCOUVER **bc. canada**

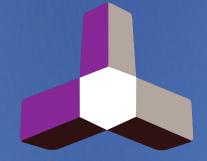
Calibration of radiation survey meters Conclusion

Thanks to this work, we show that **calibration of radiation survey meters** is possible **without radioactive source**, resulting in a process **safer for workers and environment**.

For this purpose, we use the **bremsstrahlung of electrons accelerated to a few MeV** as a calibration source, which presents furthermore a **more representative energy spectrum**.

It is possible to control the source with an accuracy good enough to **reach less than 5% of error** on the calibration result on a **large dose-rate range**, from 0.1 μ Sv/h to 100 Sv/h.

Stability and reproducibility of the method are guaranteed by **automation of the process** (carousel, cameras, transfer ionisation chambers).


IMRP2016 VANCOUVER

A new application for electron beam: Calibration of radiation survey meters

Thank you for your kind attention!

Discussions, Questions and Answers

Arnaud Chapon, PhD, Nuclear Measurements Expert, achapon@cerap.fr

