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Particles are travelling in Space and can arrive 1n
the vicinity of the Earth. They can be:

* Deflected by the magnetic field
* Trapped in the magnetic field

* Pass through the magnetic field and enter the
atmosphere
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Radiations from space to ground level?

altitude
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Less particles at lower
500 km altitudes
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Main effects vs main applications
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Single Event Effects

SET = Single Event Transient

SEU = Single Event Upset

SBU = Single Bit Upset

MCU = Multiple Cell Upset

MBU = Multiple Bit Upset (=MCU in the same word)
SEFI = Single Event Functional Interupt

SEL = Single Event Latchup

SEB = Single Event Burnout

SEGR = Single Event Gate Rupture
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Cross section

The concept of a cross section is used to express the probability of a
process (e.g. particle interaction).
More generally the cross section is defined by:

Number of
N / « events »
Z
/ 5 Fluence
Cross section (cm?) (part/cm?)

NB: the considered cross section is associated to a given process. For
example :

- particle that interacts

- particle that deposits more than a given energy
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Differential neutron flux in atmosphere

Allows knowing the energy distribution of particles.
Area under the curve represents the particle flux
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Neutrons induced nuclear reactions

Neutrons interact by nuclear reactions
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Example : stopping power of ions
in silicon
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SET: Single Event Transient

A momentary voltage excursion (voltage spike) at
a node in an integrated circuit caused by a single
energetic-particle strike.

e Although an SET does cause a transient in the
gate output struck by the particle, it may
propagate through subsequent gates and can
cause an SEU when it reaches a memory
element.
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MQOS transistor
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MQOS transistor

V>0
gate

The transistor is ON
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Nuclear reaction
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Electron-hole pairs diffusion

gate
drain | source

o= n

=+ |

31



Electron-hole pairs diffusion
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Transient current
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neutron

Single Event Transient

Transient

1
Output voltage of the inversor

Current source representing the
transient current generated by the
ionizing particle.

time
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Single Event Transient

If the transient is :

e long enough
\’ and

* high enough

Output voltage of the inversor

time l
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SEU: Single Event Upset

* Change of state in storage element (memory
cell or registers)

* This is a particular case of a SET which locks a
memory cell.

* |t can happen in ALL kind of memory.
Nevertheless SRAM are the most sensitive.

0 —1=20
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Multiple Cell Upset (MCU)

1ion, 2 SEU 1 neutron, 4 ions, 3 SEU
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MBU: Multiple Bits Upset

* A multiple-cell upset (MCU) in which two or more error
bits occur in the same word.

* An MBU cannot be corrected by a simple single-bit ECC.

* To avoid MBU, bits in same word are placed as far as
possible one from each other by using appropriate
scrambling in the memory design.

38



Some general ways to address the
radiation effects on electronics

Test under beam (neutrons, protons, ions)
Laser Test

Test @ altitude
— Mountain
— Onboard

Test underground
Simulations
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Simulation STEPS ... Ideally

AES8, AP8, OMERE,
QARM, IEC, JEDEC...
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SET Monte Carlo Simulation
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SET Monte Carlo Simulation

Electrode (7

Transient current

o
A
___._._0__'_ ___________________ ® R

time
Silicon

42




SET Monte Carlo Simulation
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Neutrons results example for a 65-nm
SRAM
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Conclusion

In space: protons + electrons + ions
In atmosphere: neutrons

3 family effects: single event, ionizing dose,
displacement damage

For ground level application intrinsic radioactivity
(alpha-emitters) are also a concern

SEE cross section give the sensitivity of device
which depends on particle kind and energies

Most common way to address the sensitivity
— Experiments (beam or in altitude)
— Simulations (especially Monte Carlo simulations)
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