Effets des rayonnements naturels sur l'électronique : applications spatiales, avioniques et terrestres

Frédéric WROBEL

Université de Montpellier Institut d'Electronique et des Systèmes Groupe RADIAC



# Outline

- Natural radiation environment
- Main effects vs main applications
- The case of single event effect
  - Mechanisms
  - Ingredients for simulations
- Conclusion

# Outline

- Natural radiation environment
- Main effects vs main applications
- The case of single event effect
  - Mechanisms
  - Ingredients for simulations
- Conclusion

# Radiations in Space



## Solar Flare



# Radiation Belt





# Radiation induced dysfunction in satellites



Particles are travelling in Space and can arrive in the vicinity of the Earth. They can be:

- Deflected by the magnetic field
- Trapped in the magnetic field
- Pass through the magnetic field and enter the atmosphere





# Particle flux in atmosphere



#### **Radiations from space to ground level?**



## Less particles at lower altitudes

#### BUT

The number of devices is greater at ground level + Technologies are more and more integrated

# Outline

- Natural radiation environment
- Main effects vs main applications
- The case of single event effect
  - Mechanisms
  - Ingredients for simulations
- Conclusion

# Main effects vs main applications

|                        |      |                              |         | 5         |          |               |
|------------------------|------|------------------------------|---------|-----------|----------|---------------|
|                        | lons | Protons<br>(solar<br>flares) | Protons | Electrons | Neutrons | Radioactivity |
| Single events          | Х    | Х                            | Х       |           | Х        | Х             |
| Ionising dose          |      | Х                            | Х       | Х         |          |               |
| Displacement<br>damage |      | Х                            | Х       | x         |          |               |

# Outline

- Natural radiation environment
- Main effects vs main applications
- The case of single event effect
  - Mechanisms
  - Ingredients for simulations
- Conclusion

# Single Event Effects

17

- SET = Single Event Transient
- SEU = Single Event Upset
- SBU = Single Bit Upset
- MCU = Multiple Cell Upset
- MBU = Multiple Bit Upset (=MCU in the same word)
- SEFI = Single Event Functional Interupt
- SEL = Single Event Latchup
- SEB = Single Event Burnout

. . .

• SEGR = Single Event Gate Rupture

# Cross section

The concept of a **cross section** is used to express the probability of a process (e.g. particle interaction).

More generally the cross section is defined by:



**NB:** the considered cross section is associated to a given process. For example :

- particle that interacts
- particle that deposits more than a given energy

# Electronics under beam SEU in SRAM



# Differential neutron flux in atmosphere

Allows knowing the energy distribution of particles. Area under the curve represents the particle flux



Around 20 n/(cm<sup>2</sup>.h) with energy greather than 1 MeV (after JEDEC).

NB: it actually depends on geolocation and solar activity

# Soft Error Rate (SER)

#### **Device**

#### **Environment**



## Neutrons induced nuclear reactions

Neutrons interact by nuclear reactions



particles

# Example : stopping power of ions in silicon



SRIM code by J. Ziegler

# Range of light ions in silicon

The range is the distance of a particle before being stopped.

Generally expressed in cm or µm



# SET: Single Event Transient

- A momentary voltage excursion (voltage spike) at a node in an integrated circuit caused by a single energetic-particle strike.
- Although an SET does cause a transient in the gate output struck by the particle, it may propagate through subsequent gates and can cause an SEU when it reaches a memory element.

### **MOS transistor**



### **MOS transistor**



## **MOS transistor**



# **Nuclear reaction**



# Ionization



# **Electron-hole pairs diffusion**



# **Electron-hole pairs diffusion**





# Single Event Transient



transient current generated by the ionizing particle.

#### Single Event Transient If the transient is : long enough and high enough time Then the logical state can: • change for a while be propagated B Soft error Transient fault CIN >Сонт **N**U2 А CLK U1

35

Registers

# SEU: Single Event Upset

- Change of state in storage element (memory cell or registers)
- This is a particular case of a SET which locks a memory cell.
- It can happen in ALL kind of memory. Nevertheless SRAM are the most sensitive.



# Multiple Cell Upset (MCU)



# MBU: Multiple Bits Upset

- A multiple-cell upset (MCU) in which two or more error bits occur <u>in the same word</u>.
- An MBU cannot be corrected by a simple single-bit ECC.
- To avoid MBU, bits in same word are placed as far as possible one from each other by using appropriate scrambling in the memory design.

# Some general ways to address the radiation effects on electronics

- Test under beam (neutrons, protons, ions)
- Laser Test
- Test @ altitude
  - Mountain
  - Onboard
- Test underground
- Simulations

# Simulation STEPS ... Ideally



### **SET Monte Carlo Simulation**



### **SET Monte Carlo Simulation**



### **SET Monte Carlo Simulation**



# Neutrons results example for a 65-nm SRAM



B.D. Sierawski, K. M. Warren, R. A. Reed, R. A. Weller, M. M. Mendenhall, R. D. Schrimpf, R. C. Baumann, and V. Zhu, "Contribution of lowenergy (<10MeV) neutrons to upset rate in a 65 nm SRAM," IRPS 2010, IEEE International, pp. 395-399, 2010.

# Outline

- Natural radiation environment
- Main effects vs main applications
- The case of single event effect
  - Mechanisms
  - Ingredients for simulations
- Conclusion

# Conclusion

- In space: protons + electrons + ions
- In atmosphere: neutrons
- 3 family effects: single event, ionizing dose, displacement damage
- For ground level application intrinsic radioactivity (alpha-emitters) are also a concern
- SEE cross section give the sensitivity of device which depends on particle kind and energies
- Most common way to address the sensitivity
  - Experiments (beam or in altitude)
  - Simulations (especially Monte Carlo simulations)