

Séminaire RP du réseau Grand-Ouest

Vérification de l'étalonnage de radiamètres sans source radioactive

Arnaud Chapon (achapon@cerap.fr)

CERAP - Conseils et Etudes en RAdioProtection

13 octobre 2016

Contrôle périodique de l'étalonnage

Arrêté du 21 mai 2010:

Arrêté du 21 mai 2010

- le contrôle périodique de l'étalonnage consiste à mesurer les grandeurs caractéristiques de l'instrument de mesure qui sont fournies par son certificat d'étalonnage.
- pour les instruments de mesure sans contrôle permanent de bon fonctionnement, la périodicité du contrôle périodique de l'étalonnage est triennale.

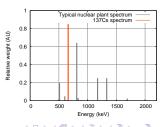
Contrôle périodique de l'étalonnage

Arrêté du 21 mai 2010

Etalon de mesure

 \Rightarrow source radioactive (¹³⁷Cs).

Avantages :


- Méthode éprouvée,
- Méthode de référence (ISO-4037).

Inconvénients :

- Risque d'une exposition accidentelle,
- Faible productivité,
- Gamme en énergie limitée.

Exemple d'irradiateur (CEA)

Contrôle périodique de l'étalonnage

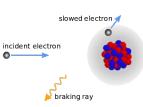
Arrêté du 21 mai 2010

Objectif de CERAP:

S'affranchir de sources radioactives pour le contrôle périodique de l'étalonnage de radiamètres.

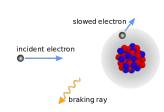
CERAP – Conseil et Etudes en RAdioProtection:

- Acteur majeur de la radioprotection en France,
- Date de création: 1988,
- Effectif: ~500 collaborateurs,
- 3 centres de gestion: Cherbourg-en-Cotentin, Saclay, Bagnols-sur-Cèze,
- 2 filiales: Advance engineering, SEFC.

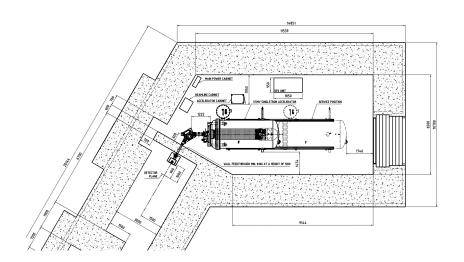

2 Mise en oeuvre du procédé

3 Outils de modélisaion/simulation

Méthode innovante proposée par CERAP

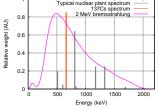

- Etalon de mesure
 - \Rightarrow rayonnement de freinage

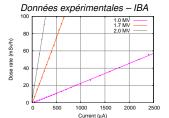
Méthode innovante proposée par CERAP


- Etalon de mesure
 - ⇒ rayonnement de freinage
- Accélérateur d'électrons:
 - Electrostatique,
 - Energie ajustable de 0.1 à 3.5 MeV,
 - Faisceau de quelques pA à 1 mA (600 μA au-delà de 2 MeV).
- Dipôle:
 - Déviation du faisceau,
 - Filtration en énergie.
- Cible de conversion amovible.

Singletron HVEE

Méthode innovante proposée par CERAP

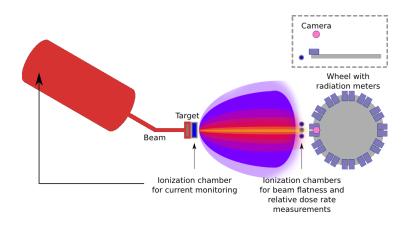

Avantages:


- Large gamme en énergie.
- Débit de dose ∝ intensité du faisceau.
- Pas de source radioactive.

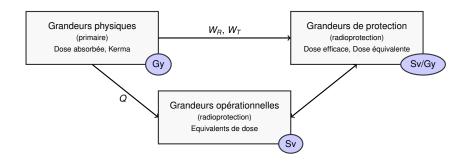
• Mise en oeuvre du procédé:

- Contrôle de l'accélérateur:
 - stabilité/reproductibilité.
- Caractérisation du champ d'irradiation:
 - ★ calibration absolue (K_{air}).
 - homogénéité.
- Automatisation du procédé:
 - fiabilisation.
 - productivité.

Simulation Bayeux/Geant4 Typical nuclear plant spectrum 137Cs spectrum 2 MeV bremsstrahlung 0.8 0.6



Mise en oeuvre du procédé


Problématique

Mise en oeuvre du procédé

Calibration absolue du champ d'irradiation

Mise en oeuvre du procédé

Calibration absolue du champ d'irradiation

Besoin d'une mesure absolue d'une grandeur physique:

- Comparaison à une source primaire ⇒ CEA/LNHB¹,
- Le kerma dans l'air (K_{air}).

Le **kerma** (Gy ou J/kg) est l'énergie cinétique **transférée** aux particules chargées:

$$K = K_C + K_R$$

- K_C : kerma collision A l'équilibre électronique (compensation de l'énergie des particules chargées qui quittent et qui entrent dans le volume): $D = K_C$
- K_R: kerma rayonnement
 Contribution du rayonnement de freinage

¹Laboratoire national de métrologie dans le domaine des rayonnements ionisants ≥ → ⊃ ⊃ ⊃ ⊃

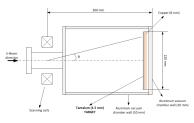
Mise en oeuvre du procédé

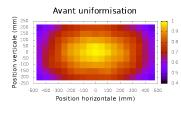
Calibration absolue du champ d'irradiation

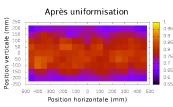
• Passage de *K_{air}* vers *H*:

$$h_K = \frac{H/\phi}{K_{air}/\phi}$$

- Mesure absolue de Kair:
 - Comparaison à la référence nationale.
- Etalonnage d'une chambre de transfert:
 - ▶ Mesure de H*(10) et incertitude associée.
- Vérification de l'étalonnage de radiamètres:
 - Comparaison de l'indication du radiamètre à l'indication de la chambre de transfert.

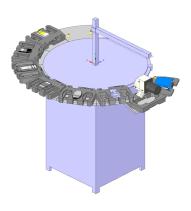





Mise en oeuvre du procédé

Uniformisation du champ d'irradiation

• Balayage de la cible $\theta(t)$:

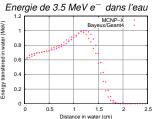


Mise en oeuvre du procédé

Automatisation du procédé

- Définition de séquences d'irradiation:
 - Positionnement des radiamètres,
 - Champ d'irradiation:
 - énergie et courant du faisceau,
 - balayage.
 - Mesures du débit de dose:
 - chambre d'ionisation de référence,
 - radiamètre.
 - Rotation du passeur.

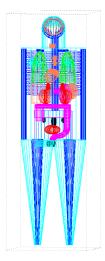



Outils de modélisaion/simulation

Bayeux/GEANT4 & MCNP-X

Deux codes Monte-Carlo:

- Bayeux/GEANT4
 - ► Code open-source, C++
 - ► Fichiers de configuration ASCII
 - ► Code GEANT4 ⇒ détecteurs (CERN)
- MCNP-X
 - Code propriétaire, fortran90
 - Outils statistiques d'optimisation (réduction de variance)
 - Référence en radioprotection



Outils de modélisaion/simulation

Bayeux/GEANT4 en action

Exemple de géométrie complexe:


```
[name="brain" type="geomtools::ellipsoid"]
x radius : real as length = 60.0 mm
```

y_radius : real as length = 90.0 mm z_radius : real as length = 65.0 mm

[name="brain.model" type="geomtools::simple_shaped_model"]

shape_build_mode : string = "factory" shape_ref : string = "brain" material.ref : string = "soft_tissue" visibility.color : string = "orange"

[name="head.model" type="geomtools::simple_shaped_model"] internal_item.labels : string[4] = "skull" "brain" "thyroid" "upper_spine"

internal_item.model.brain : string = "brain.model" internal_item.placement.brain : string = "0 0 85.0 (mm)"

Conclusion

Méthode innovante mise en oeuvre par CERAP

- Preuve de faisabilité:
 - Contrôle de l'accélérateur:
 - * stabilité/reproductibilité.Caractérisation du champ
 - d'irradiation:
 - * calibration absolue (K_{air}) ,
 - homogénéité.
 - Automatisation du procédé:
 - fiabilisation,
 - * productivité.

- Procédé fiable.
- Spectre en énergie couvrant toute la gamme des radiamètres,
- Absence de source radioactive:
 - Sécurité accrue pour les opérateurs et l'environnement.
- + Autres applications possibles...

Construction du bâtiment initiée, à Cherbourg-en-Cotentin Fabrication de l'accéléreteur et ligne de faisceau en cours Installation opérationnelle début 2018

Conclusion

Méthode innovante mise en oeuvre par CERAP

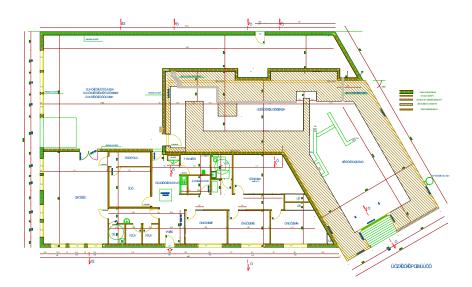
Merci pour votre attention!

18 / 27

Annexes Etalonnage

Etalonnage (définition du VIM 3):

Opération qui, dans des conditions spécifiées, établit dans une **première étape** une relation entre **les valeurs et les incertitudes** de mesure associées qui sont fournies par des **étalons** et les indications correspondantes avec les incertitudes associées, puis utilise dans une **seconde étape** cette information pour établir une **relation** permettant d'obtenir un **résultat de mesure** à partir d'une **indication**.


Annexes Zonage radiologique

- NF M62-105: installations d'accélérateurs industriels:
 - Modalités d'accès aux installations,
 - Alarmes visuelles et sonores, tri-secteur,
 - Dimensionnement des protections biololgiques.
- Objectifs CERAP: ZNR \Rightarrow < 0.5 μ Sv/h

Zone réglementée				Zone spécialement réglementée				
Zone non réglemente	ée	Zone surveillée	Zone contrôlée		Zone contrôlée jaune	Zone co ora		Zone contrôlée rouge
Dose équivalente aux extrémités (H_T)			0.2 mSv 0.			50 mSv 2.5 Sv (1h) (1h)		
Dose efficace (E_T)	80 μs (1 mo		μSv lh)	25 μS (1h)		nSv Ih)	100 r (1)	

Annexes

Annexes

Calibration absolue du champ d'irradiation

Grandeurs physiques/primaires:

- Etablissement et comparaison des références nationales,
- Toutes les autres catégories de grandeurs doivent leurs être "traçables" (par le calcul et/ou l'étalonnage).

Grandeurs de protection:

- Quantification du risque d'effets stochastiques de l'exposition aux RI,
- Etablissement des limites d'expositions des travailleurs et du public,
- Vérification leur respect dans le cadre de la radioprotection,
- Définies par la CIPR: $E = H_T.w_T = D_{T,R}.w_R.w_T$.

Grandeurs opérationnelles:

- Mesure de l'exposition des travailleurs et du public aux RI,
- Développées par l'ICRU: H = D.Q.

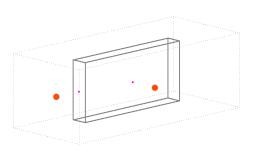
Annexes

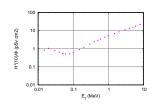
Calibration absolue du champ d'irradiation

$$\mathcal{K} = \sum_{0}^{E_{max}} \phi(E).E. \left(\frac{\mu_{tr}}{\rho}\right)_{E,Z} \qquad \quad \mathcal{K}_{C} = \sum_{0}^{E_{max}} \phi(E).E. \left(\frac{\mu_{en}}{\rho}\right)_{E,Z}$$

Avec:

- $\phi(E)$, la fluence de particule neutre,
- E, l'énergie des particules neutres,
- $(\mu_{tr}/\rho)_{E,Z}$, le coefficient de transfert massique en énergie pour une énergie E et un numéro atomique Z
- $(\mu_{en}/\rho)_{E,Z}$, le coefficient d'absorption massique en énergie pour une énergie E et un numéro atomique Z


Annexes


Logiciels de radioprotection

Mesure de la fluence:

- Sur la grande face:
 - ► A1 à 1 cm
 - ► A2 à 1 m
- Sur la petite face:
 - ▶ B1 à 1 cm
 - ▶ B2 à 1 m

Calcul de H*(10) à partir de la CIPR publication 74²:

²ICRP, 1996. Conversion Coefficients for use in Radiological Protection against External Radiation. ICRP Publication 74. Ann. ICRP 26 (3-4).

Annexes

Logiciels de radioprotection

% (Bayeux)	A1	A2	B1	B2
MCNP	1.80	2.09	6.19	2.82
RayXpert	10.70	5.22	5.82	1.32
Dosimex	8.74	10.38	7.49	6.58
Microshield	9.42	6.82	20.37	8.83
Mercurad	9.25	7.79	12.19	11.44
Mercure	16.77	13.54	16.65	15.58
Fluka	22.80	16.48	24.60	28.70
Narmer	18.25	17.07	18.89	19.69

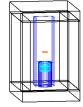
Monte-Carlo:

- Bayeux
- MCNP
- RayXpert
- Fluka

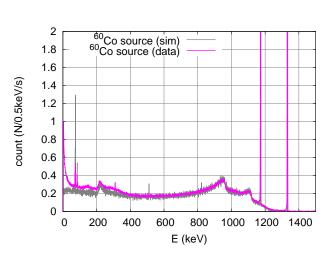
Sur-estimation:

- Dosimex
- Mercure

Sous-estimation:


- Mercurad
- Fluka
- Narmer

Annexes


Logiciels de radioprotection

Système expérimental

Modélisation Bayeux

Annexes

Autres applications possibles

Industrie	Applications	Actions	Résultats		
Aérospatial	Composants électroniques	Tests sous irradiation	Fiabilité des composants Mesure de défauts		
Energie	Semi-conducteurs	Dopage	Amélioration des performances		
Santé	Prothèses, matériels médicaux Radio-biologie	Stérilisation Irradiations cellulaires	Respect des normes sanitaires Nouveaux traitements anti-cancer		
Matériaux	Polymères Films minces Câbles, tubes	Réticulation, greffage Traitement de surface Ignigugation	R&D nouveaux matériaux Amélioration de la tenue au feu		
Nucléaire	Radioprotection Mesures	Tests de vieillissement Raccordement source primaire	Qualification de protections biologiques Développement de détecteurs, Étalonnage		
Formation	Etudiants Formation professionnelle	Visite de site	Dimensionnement de protections biologiques Ventilation nucléaire, Portage d'autorisations ASN		