

SERC

Agenda overview

CERAP and its subsidiaries at a glance

✓ ATRON, a technological platform in Normandy

Irradiation services

- \checkmark Calibration of radiation survey meters
- ✓ Treatment of materials
- Qualification of electronic devices for nuclear or space applications

Characteristics of our irradiation means

✓ Ebeam and X-rays

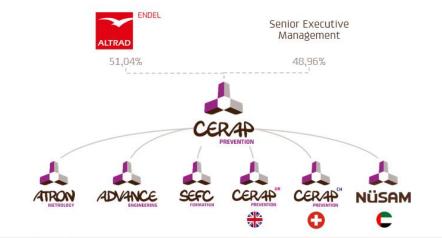
Example of services

- ✓ Applications on electronics
- \checkmark Applications on materials
- ✓ R&D involvements

Arnaud CHAPON

Scientific & technical manager

ATRON METROLOGY


CERAP and its subsidiaries at a glance

CERAP is 51% subsidiary of ALTRAD ENDEL, French leader in nuclear services and industrial maintenance.

CERAP and its subsidiaries at a glance

ADVANCE

TRON

C.

ATRON, a technological platform in Normandy

FELIX: E-BEAM AND X-RAYS FACILITY

- \checkmark Calibration of radiation survey meters
- \checkmark Treatment of materials
- Qualification of electronic devices for nuclear or space applications

CALIBRATION OF SURVEY METERS

- ✓ 3000 devices per year
- \checkmark Without radioactive source
- \checkmark High metrological requirements
- ✓ In accordance with the ISO-17025 standard (COFRAC accreditation nº 2-6778)

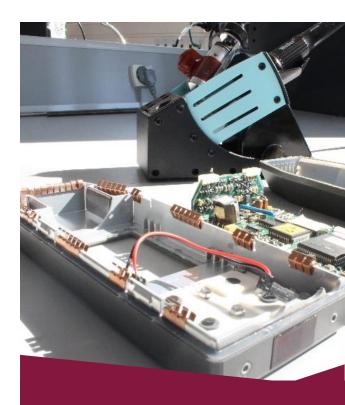
Since 2018

2 PhDs

Turnover: 0,5 M€

Calibration of radiation survey meters

METROLOGICAL ADVANTAGE


- Adaptation of the energy spectrum (1.25 MeV, 2.00 MeV, 3.00 MeV) to the measurement range of the instruments
- ✓ Adaptation of dose rates (20%, 50%, 80%) to each H*(10) range of instruments

ENVIRONMENTAL ADVANTAGE

✓ No radioactive source

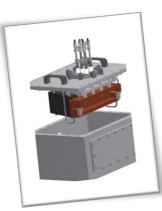
AUTOMATION OF IRRADIATION SEQUENCES

- \checkmark reliability of results
- \checkmark reduction of instrument downtime

On-site repair

Contaminated instruments

Instrument rental service


Electrons accelerator datasheet

ENERGY RANGE OF ELECTRONS

• From 0.2 to 3.5 MeV

ELECTRONS BEAM CURRENT

• From ~1 pA to 1 mA

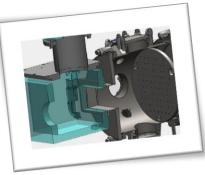
X-RAYS

- From 0.1 µGy/h to 500 Gy/h = 1 µrad/h - 50 krad/h
- Volumes up to few m³ (irradiation room size is 3×6 m²)

E-BEAM

X conversion target

- Up to 6×10¹⁵ e⁻/s
- Beam spot size ~1 mm²


Electrostatic accelerator Removable X-target → X-rays or ebeam

Irradiation chamber datasheet

internal cold plate

TEMPERATURE CONTROL

• From -200 °C to +300 °C

ATMOSPHERE CONTROL

- Under vacuum,
- In N₂, Ar, Air, etc.

VACUUM-TIGHT FEEDTHROUGHS

- Instrumentation during irradiation
- Window and camera available

EFFECTIVE SURFACE

- 300 mm in diameter for X-rays irradiations
- Up to 40×220 mm² in e-beam

Simulation of extreme environmental conditions

Irradiation services

TREATMENT OF MATERIAL BY IRRADIATION

- \checkmark Innovation capabilities, scientific collaborations
- ✓ Extreme environmental conditions

ACCELERATED AGEING OF MATERIALS UNDER RADIATION

- \checkmark Various applications in space or nuclear domains
- \checkmark From coating (ebeam) to whole system (X-rays)

EQUIPMENT QUALIFICATION UNDER RADIATION

- \checkmark TID effects on components and systems
- ✓ Continuity of service during equipment lifetime

Easy availability Strong reactivity Confidentiality culture

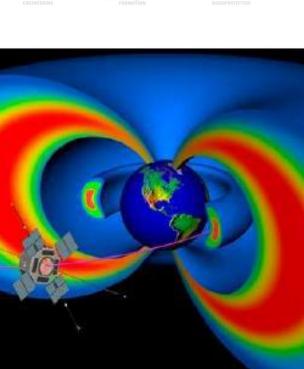
PRESENTATION NUMERO :

RADIATION EXECUTIVE TESTS

Effects of radiation on electronic devices and materials depends on:

✓ Type of radiation (photon, electron, proton, etc.)

Effects of radiative environments


 \checkmark Rate of interaction

on components

- ✓ Type of material (Silicon, GaAs)
- ✓ Component characteristics (process, structure, etc.)

CONSEQUENCES

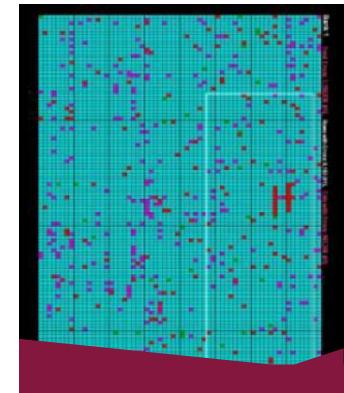
- ✓ Single Events Effects (SEE)
- ✓ Displacement Damages (DD or TNID)
- ✓ Total Ionizing Dose (TID)

in Earth magnetic field

Electrons and protons trapped

(Lorentz force)

Single Events Effects


✓ SEEs are Random Events:

- 1. Charge generation (direct orindirect ionization)
- 2. Charge Collection and Recombination
- 3. Circuit Response
- ✓ Many types of SEEs: SET, SEU, MCU, SEFI, ISB, SEL, SEB, SEGR/SEDR, etc.
- ✓ Single Events Effects (SEE) \rightarrow LET (MeV.cm²/mg)

✓ Heavy ions

lon	Total Energy (MeV)	Range in Si (µm)
⁸⁴ Kr	1260	170
¹²⁹ Xe	1935	156
¹⁶⁵ Ho	2475	112

15MeV beams

A SEE with a low probability of occurrence can occur the first day of a mission

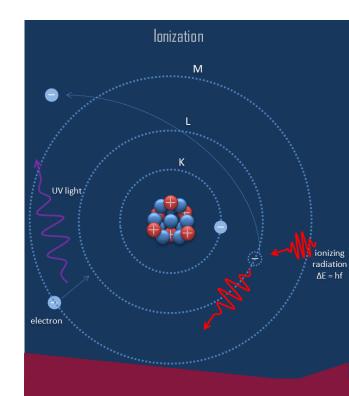
Displacement Damages

✓ Sensor degradation is a significant constraint for payloads and star trackers (CCDs)

- ✓ Increase of dark current (overall)
- ✓ Hot pixels (→ reduction at low temperatures)
- \checkmark Charge Transfer Efficiency (CTE) degradation
- ✓ Displacement Damage (TNID) → NIEL (MeV.cm²/g)
 - ✓ Protons (most often in 40-60 MeV range)
 - ✓ Flux generally in the range of 10^7 to 10^8 p/cm²/s
 - Up to a fluence based on NIEL:
 - ✓ target material,
 - \checkmark particle type and energy.

Frenkel pair after stable migration of vacancies and

interstitials


Total Ionizing Dose

- Component degradation is very much dependent on a device technology, process and bias conditions
- ✓ TID is mainly a semiconductor oxide effect → $E_{EH}(SiO_2) = ~17 \text{ eV}$
- ✓ Total lonizing Dose (TID) → D (Gy)
 - ✓ Dose rates most often higher than the actual operation dose rates
 - ✓ Co-60 Gamma rays
 - ✓ X-rays from ebeam

Excited electrons are freed from their bound state and create electron-hole pairs

Example of applications on electronics

CHARACTERIZATION OF RADIATION DETECTORS

- ✓ RADFETs components
- ✓ 3.5 MeV X-rays at 500 Gy/h (50 krad/h) for 20 hours to reach a total dose of 10 kGy (1 Mrad)

QUALIFICATION OF LED LUMINAIRES IN NUCLEAR ENVIRONMENT

- ✓ Equipment powered during irradiation, camera monitoring
- ✓ X-ray irradiation up to 9 kGy in air (Red Zone)

QUALIFICATION OF RF CABLES

 ✓ 240 keV ebeam scanned on a 160×160 mm² area for 10 hours at 80 nA/cm²

Representative spectrum Large irradiation areas (system / subsystem scale)

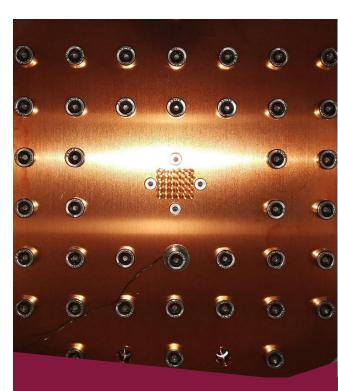
Example of applications on materials

COATING TESTS

- \checkmark Qualification for space applications
- ✓ 400 keV ebeam scanned on a 40×150 mm² area for 1 hour at 1 µA

CHARACTERIZATION OF PROTECTION SCREENS

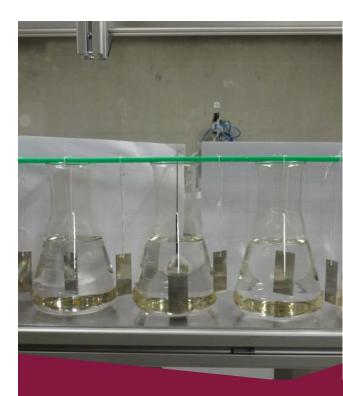
- \checkmark X-ray irradiation on various energy spectra
- \checkmark Attenuation measurements


QUALIFICATION OF NUCLEAR STEELS

- ✓ 30 samples → nuclear ageing modelling
- ✓ 2 MeV ebeam scanned on a 20×20 mm² area for 15 days at 1 mA

Wide ranges of energy Wide ranges of dose-rate Temperature control

Example of R&D involvements

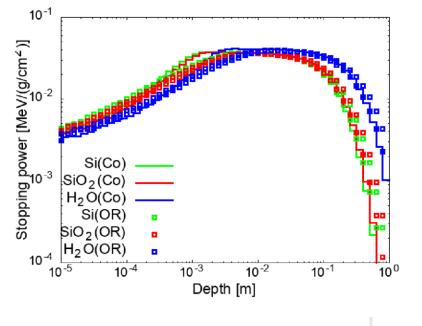


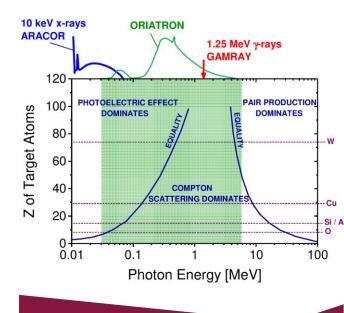
STUDY OF CORROSION/BIOCORROSION UNDER RADIATION

- ✓ Water radiolysis
- ✓ Nature of the sample and its representative medium

RADNEXT CONTRIBUTOR (H2020 PROGRAM)

- ✓ WP7-JRA3: cumulative radiation effects on electronics:
 - Determination of Co-60 / X-ray comparison
 - Provision of expertise for Monte-Carlo simulations (Geant4)


Tailor-made tests R&D programs Flexibility


Innovation in regulations and standards

RADECS conference, oct. 2022, V. Girones et al.

 Stopping power of photons from Co-60 and Mev-scale X-rays are the same, whatever is the material

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 5, MAY 2021

Investigations on Spectral Photon Radiation Sources to Perform TID Experiments in Microand Nano-Electronic Devices, M. Gaillardin et al.

TID Effects Induced by ARACOR, 60Co, and ORIATRON Photon Sources in MOS Devices: Impact of Geometry and Materials, D. Lambert et al.

Innovation in regulations and standards

"Design and construction rules for electrical equipment of nuclear islands"

 ✓ Gamma radiation from cobalt-60 shall be used, the radiation takes place in air

WHAT ABOUT ASME, KTA, NIKIET, ETC.?

CLIENT BENEFITS

- \checkmark Alternative solution to radiation qualification
- ✓ Higher representativity of a wide spectrum compared to gamma of cobalt-60
- ✓ Safety standards improvement
- \checkmark Costs reduction

Radiation sources comparison Nuclear applications

Representativity of tests

Optimization through innovation

ATRON OFFERS ALTERNATIVE TO THE USE OF RADIOACTIVE SOURCES

- \checkmark Calibration of radiation survey meters
- ✓ Treatment of materials
- ✓ Qualification of electronic devices for nuclear or space applications

STRONG R&D INVOLVEMENT

- $\checkmark~$ Study of corrosion/biocorrosion under radiation
- \checkmark Cumulative radiation effects on electronics
- $\checkmark~$ Reduction in the use of radioactive sources

ANY QUESTION?

Arnaud CHAPON +33.261.819.990 achapon@atron.fr

4

OPTIMIZATION THROUGH INNOVATION